用户自定义边界条件(渗流)

本案例通过模拟海床、防波堤及沉箱两侧不同水位下导致的渗流情况,讲解用户自定义边界条件的编辑及使用。模型如图 9-1 所示。

9.1 自定义边界条件的编程与编译

FSSI 提供了用户自定义边界条件的模板,通过 VS 和 Intel 编辑器即可对其进行操作,具体步骤如下。

9.1.1 搭建编译环境

下载 VS(Visual Studio)软件并下载与 VS 软件匹配的 Intel 编译器(Intel Visual Fortran Composer XE)。需要注意, Intel 编译器必须要与 VS 版本匹配,用户可依据图 9-2 下载匹配的 VS 与 Intel 编译器。

注: 建议使用 2017 版本。

1	VS2013 support was added in Composer XE 2013 SP1 Update 1 (14.0.1)								
2	VS2013 support was added in Parallel Studio XE 2015 Update 4 (15.0.4)								
3		VS2017 is supported in Parallel Studio XE 2017 Update 5 only							
(4)	If is (Community	edition, Des	ktop develo	pment with	C++ comp	onent is nee	eded	
(5)	If is Co	mmunity ec	dition, Comn	non Tools fo	or Visual C+	+ 2015 com	nponent is n	eeded	
Ô	the version number is same with Intel Parallel Studio XE								
0	12.0&12.1	13.0&13.1	14.0	15.0	16.0	17.0	18.0	19.0	

Release Notes of IVF: https://software.intel.com/en-us/articles/intel-fortran-compiler-release-notes

图 9-2 Intel Visual Fortran Composer XE 和 Visual Studio 的版本对应图

9.1.2 根据模板编写 DLL 文件

FSSI 提供的用户自定义边界条件模板的*.f90 文件分别提供了自定义位移、孔压、集中力和流量(UPFQ)和自定义分布荷载、分布流速(FV)的子程序接口。在固体节点上可以自定义位移、集中力;在流体节点上可以自定义孔压、流量;在固体单元上可以自定义分布力;在流体单元上可以自定义分布渗流速度。Subroutine Userdefined BoundaryValue UPFQ为自定义位移、孔压、集中力和流量子程序的接口,Subroutine Userdefined BoundaryValue FV为分布荷载和分布渗流速度子程序的接口,如图 9-3 所示。打开模板后找到图 9-3 中圈出的对应位置进行用户自定义边界条件文件的编写。本案例编写的代码内容如图 9-4 所示。

图 9-3 用户自定义边界条件起始部位示意图

Subroutine UserDefined_BoundaryValue_UPFQ_1(Coordinate, Ndime, RunTime, Pressure, Idofn)

- ! UPFQ: 表示在节点上施加位移、孔压、集中力、流量
- ! 返回施加在坐标为Coordinate的点,第Idofn个自由度方向上的边界条件值Pressure

!DEC\$ ATTRIBUTES DLLEXPORT::UserDefined_BoundaryValue_UPFQ_1

Implicit None

Į. Input Variables Ndime Integer !表明返回值Pressure施加的自由度方向: 1为X方向, 2为Z方向, 孔压对应值为1 Integer Idofn Double Precision Coordinate(Ndime) Double Precision RunTime Output Variables Ţ Double Precision Pressure Į. Local Variables Double Precision X, Y, Z, SWL1, SWL2, P1, P2 Body of UserDefined_BoundaryValue Į. X=Coordinate(1) Z=Coordinate(Ndime) Pressure=0.0D0 SWL1=21.0D0 SWL2=14.0D0 If (X.LE. 26)Then If (Z.LE.SWL1) Then Pressure=9810*(SWL1-Z) End If End If If (X.GE. 29)Then If (Z.LE.SWL2) Then Pressure=9810*(SWL2-Z) End If End If P1=9810*(SWL1-13) P2=9810*(SWL2-13) !If (X.GT. 26. AND. X.LT. 29) Then ! If (Z. LE. SWL2) Then !Pressure=(29-X)*(P1-P2)/3+P2 !End If !End If

Return End Subroutine UserDefined_BoundaryValue_UPFQ_1 Subroutine UserDefined_BoundaryValue_FV_1(Coordinate,Ndime,RunTime,Pressure) FV: 表示在单元上施加分布力、速度 !DEC\$ ATTRIBUTES DLLEXPORT::UserDefined_BoundaryValue_FV_1

Implicit None

Į.

```
Ţ.
      Input Variables
      Integer
                        Ndime
      Double Precision Coordinate(Ndime)
      Double Precision RunTime
      Output Variables
Į.
      Double Precision Pressure
Į.
      Local Variables
      Double Precision X, Y, Z, SWL1, SWL2, P1, P2
      Body of UserDefined_BoundaryValue
Ţ.
      X=Coordinate(1)
      Z=Coordinate(Ndime)
      Pressure=0.0D0
      SWL1=21.0D0
      SWL2=14.0D0
      If (X.LE. 26)Then
         If (Z.LE.SWL1) Then
            Pressure=9810*(SWL1-Z)
         End If
      End If
      If (X.GE. 29)Then
         If (Z.LE.SWL2) Then
            Pressure=9810*(SWL2-Z)
         End If
      End If
     P1=9810*(SWL1-13)
     P2=9810*(SWL2-13)
     !If (X.GT. 26. AND. X.LT. 29) Then
         If (Z.LE.SWL2) Then
     1
           !Pressure=(29-X)*(P1-P2)/3+P2
        !End If
     End If
```

Return End Subroutine UserDefined_BoundaryValue_FV_1

图 9-4 本案例编写的用户自定义边界条件代码

9.1.3 由*.f90 文件生成动态链接库(DLL)文件

编辑完成后,点击生成—生成解决方案,如图 9-5 所示。如果用户不自己定义保存路径,生成的 DLL 文件默认在图 9-4 中新建项目保存路径下的 UserDefined_BoundaryValue 文件夹内,具体路径是 UserDefined_BoundaryValue—UserDefined_BoundaryValue—x64—Debug/Release,Debug 配置下的 DLL 文件生成路径如图 9-6 所示。

图 9-5 生成用户自定义边界条件 DLL 文件的步骤示意图

> HeKunpeng > FSSI-CAS 2D > DLL_for	FSSI CAS 2D > Bound	any > UserDefined_Bo	undaryValue
A 名称	修改日期	类型	大小
BuildLog.htm	2021/4/23 16:02	Chrome HTML D	6 KB
UserDefined_BoundaryValue.dll	2021/4/23 16:02	应用程序扩展	> 10 КВ
UserDefined_BoundaryValue.dll.emb	2021/4/23 16:02	MANIFEST 文件	1 KB
🔁 UserDefined_BoundaryValue.dll.emb	2021/4/23 16:02	Resource Script	1 KB
UserDefined_BoundaryValue.dll.emb	2021/4/23 16:02	Compiled Resou	1 KB
UserDefined_BoundaryValue.dll.inter	2021/4/23 16:02	MANIFEST 文件	1 KB
🖉 UserDefined_BoundaryValue.exp	2021/4/23 16:02	Exports Library F	2 KB
UserDefined_BoundaryValue.lib	2021/4/20 9:23	Object File Library	3 KB
OserDefined_BoundaryValue.obj	2021/4/23 16:02	3D Object	2 KB

图 9-1 Debug 配置下 UserDefined_BoundaryValue.dll 文件的存储地址

注:用户自定义边界条件动态链接库要给定施加力的大小和方向。施加分布荷载时,以压为 正,拉为负;施加集中荷载时,与坐标正方向同向为正,反向为负。注意不要将方向弄 反!

9.2 FSSI-CAS-2D/3D 图形界面操作——前处理

9.2.1 导入网格和背景线

点击 FSSI-CAS-2D/3D—Preprocess—Load Mesh—Gid,在弹出的文件选择对话框中选择 Gid 输出的网格文件,双击或点击打开按钮,如图 9-7 所示。

PreProcess	👫 Choose GidMesh F	ile						×
Gid Abaqus	← → • ↑ 🖡 «	< Case.	> Case9 UserDefined_Boundary_Inte >	~	Ö	在 Case9 UserD	efined_Bou	م
— HyperMesh — Gmsh	组织▼ 新建文件系	友					•	?
→ Ansys □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	➡ 下载	^	名称 ^ ^	修改日期		类型	大	<u>مار</u>
💫 Outer Boundary	♪ 音乐		Project	2022/4/29	19:04	文件夹		
⊡ [2] Inner Boundary Material 1	📃 桌面		UserDefined_BoundaryValue_5_User	2022/4/29	19:04	文件夹		
Material 2	💺 本地磁盘 (C:)		📄 Mesh	2022/4/26	16:43	文件		1,632
Material 3	🧼 原系统盘 (D:)		Slope_Surf.igs	2022/4/26	16:46	IGS 文件		123
Material 1	🥪 TOSHIBA EXT ((1						
Material 2	🥌 软件 (F:)							
Boundary Conditions	👡 文档 (G:)							
BC-1	🥪 娱乐 (H:)							
BC-2 BC-3	🧅 新加固态 (l:)							
BC-4	🥌 KUZ (J:)							
		~ <						>
→ Stokes Wave		文件名(N): Mesh		~	All Files		~
T CFD		~~~~						
AreoDynamics Fluctuating Wind						打开(O)	取消	

图 9-7 导入 Abaqus 网格的步骤示意图

在弹出对话框中设置流体节点阶次如图 9-8 所示。本案例中固体节点采用六面体八节点单元。对于能发生渗透的网格区域需要将流体节点阶次设置为 1,点击 Ok 按钮确认选择。

🔬 Load Me	esh		?	×
	S. Node	Ele. Type	F. Order	
M_1	8	Solid Element	0	
M_2	8	Solid Element	1	
M_3	8	Solid Element	1	

图 9-8 设置流体节点阶次界面

点击 Preprocess—Load Background—Outer Boundary,在弹出的文件选择对话框中选择 Gid 输出的*.igs 网格文件,双击或点击打开按钮,如图 9-9 所示。界面中展示导入模型如图 9-10 所示。

图 9-2 加载外背景线 (Outer Boundary) 的步骤示意图

图 9-10 加载成功后的计算网格

9.2.2 时间步 step1 设置

本案例设置 Step 1、Step 2 两个时间步, Step 1 用于给后续计算提供一个良好的初始状态, Step 2 为正式加载计算时间步。下面进行时间步 Step 1 的设置。

9.2.2.1 添加边界条件

本案例分别对底面 (z=0 m) 节点设置 x、y、z 方向的约束,对左右两个侧面 (x=0 m) 和(x=200 m) 的节点设置 x、y 方向的约束,对前后两个面 (y=0 m) 和(y=10 m) 的节点设置 x、y 方向的约束。对流体域与固体域的接触面设置水动力边界条件。点击工具栏中图标

☑,点击工具栏中图标☑,进入面选择模式。点击键盘'R'键,开始选择。进入边界选择 模式,点击选择后被选择的面会变亮。具体操作如图 9-11。

图 9-11 选择边界面添加边界条件

注: 1.在右侧快捷窗口中点击 Show Boundary Condition,可以检查是否正确添加边界条件。
 2.边界条件添加时第二次设置会覆盖第一次设置,如重复添加边界条件,一定要保证第二次的边界条件为最终边界条件,或者单独对重复节点进行多种不同的边界条件的设置。

9.2.2.2 重力场设置

在 z 方向设置重力加速度为-9.806m/s²,如图 9-16 所示。

Loads HydroDynamics	Fssi Field Quantity	×
AreoDynamics	Acceleration (m/c^2)	
	Acceleration (m/s ⁻)	
E Field Quantity	X.	
No Acceleration Field	· · · ·	
Uniform Acceleration Field	Y: 0	
Centrifugal Acceleration Field		
Solver	Z: -9.806	
□-	ОК	Cancel

图 9-12 重力加速度设置界面

9.2.2.3 水动力边界条件设置

由于本案例要考虑流体节点,需要设置水动力边界条件,并且设置 Stokes Wave 耦合方式,点击 FssiCAS—Preprocess—Loads—Hydrodynamics—Stokes Wave。如图 9-17 所示。

图 9-13 流固耦合方式设置界面

9.2.2.4 设置材料参数

点击 FssiCAS—Preprocess—Material—Material 1,材料名称用户可以自行更改,在弹出对 话框中输入材料参数。本案例设置三种材料,参数设置如图 9-14 所示。

Material 1						
Material Name		Material	1			
Constitutive Model:			Elastic			
Succeed			No Succes	-d		
			No Succe			
Constitutive Model Pare			res			
Voung's Modulus (Pa): 1e1:	1					ה
Deisson's Patia	•					1
						1
Dampmod Model Param	eters:					-
Dampmod Model:			ELASTIC]
Young's Modulus (Pa): 0						
Poisson's Ratio: 0						
Damping Coefficient: 0						
Damping coefficient.						
						21
Material Parameter	rs:					
Solid Particle Bulk Modulus	(Pa): 1.0E+20]			
Granular Density (kɑ/m³):	2700]			
	2100		_			
Parameters under t	the Experim	ental En	vironment:			
Gravity (m/s²):	9.806		٦			
						,
Vaterial 2						
Vaterial 2 Iaterial Name		Material 2			-	、
Vaterial 2 Iaterial Name onstitutive Model:		Material 2	Elastic	-	· .	
Vaterial 2 Iaterial Name onstitutive Model: ucceed		Material 2	Elastic No Succee			
Vaterial 2 Iaterial Name onstitutive Model: ucceed nitial Stress Tensile		Material 2	Elastic No Succee Yes			
Vaterial 2 [aterial Name onstitutive Model: ucceed nitial Stress Tensile -Constitutive Model Parame	eters:	Material 2	Elastic No Succeo Yes			
Vaterial 2 [aterial Name onstitutive Model: ucceed nitial Stress Tensile -Constitutive Model Parame Young's Modulus (Pa): 1e7	eters:	Material 2	Elastic No Succee Yes		· .	
Vaterial 2 Iaterial Name onstitutive Model: ucceed hitial Stress Tensile - Constitutive Model Parame Young's Modulus (Pa): 1e7 Poisson's Ratio : 0.33	eters:	Material 2	Elastic No Succee Yes			
Vaterial 2 [aterial Name onstitutive Model: ucceed hitial Stress Tensile - Constitutive Model Parame Young's Modulus (Pa): 1e7 Poisson's Ratio : 0.33	sters:	Material 2	Elastic No Succee Yes		·	
Vaterial 2 Iaterial Name onstitutive Model: ucceed hitial Stress Tensile - Constitutive Model Paramet Young's Modulus (Pa): 167 Poisson's Ratio: 0.33 - Dampmod Model Paramet Dampmod Model:	eters:	Material 2	Elastic No Succeo Yes ELASTIC	- rd	· .	
Vaterial 2 Laterial Name onstitutive Model: ucceed hitial Stress Tensile - Constitutive Model Paramet Young's Modulus (Pa): 1e7 Poisson's Ratio : 0.33 - Dampmod Model Paramet Dampmod Model:	eters:	Material 2	Elastic No Succee Yes ELASTIC	ed		
Vaterial 2 Iaterial Name onstitutive Model: ucceed iitial Stress Tensile - Constitutive Model Paramet Young's Modulus (Pa): 1e7 Poisson's Ratio : 0.33 - Dampmod Model Paramet Dampmod Model: Young's Modulus (Pa): 0	eters:	Material 2	Elastic No Succee Yes ELASTIC		·	
Vaterial 2	eters:	Material 2	Elastic No Succee Yes ELASTIC			
Vaterial 2 Vaterial Name Constitutive Model: UCCEED	eters:	Material 2	Elastic No Succee Yes ELASTIC	rd		
Vaterial 2 Vaterial Name Onstitutive Model: ucceed itial Stress Tensile -Constitutive Model Paramet Young's Modulus (Pa): Dampmod Model: Young's Modulus (Pa): O Poisson's Ratio: O Damping Coefficient: O	eters:	Material 2	Elastic No Succee Yes ELASTIC	ed		
Vaterial 2 Iaterial Name onstitutive Model: ucceed itial Stress Tensile Constitutive Model Parame Young's Modulus (Pa): 1e7 Poisson's Ratio : 0.33 Dampmod Model Paramet Dampmod Model: Young's Modulus (Pa): 0 Poisson's Ratio: 0 Damping Coefficient: 0	eters:	Material 2	Elastic No Succee Yes ELASTIC	:d		
Vaterial 2 Vaterial 2 Vaterial Name onstitutive Model: ucceed hitial Stress Tensile Constitutive Model Paramet Young's Modulus (Pa): 1e7 Poisson's Ratio : 0.33 Dampmod Model Paramet Dampmod Model: Young's Modulus (Pa): 0 Poisson's Ratio: 0 Damping Coefficient: 0 Permeability Ty	eters: ers: Constant	Material 2	Elastic No Succee Yes ELASTIC			
Vaterial 2 Iaterial Name onstitutive Model: ucceed itial Stress Tensile Constitutive Model Paramet Young's Modulus (Pa): Poisson's Ratio: Dampmod Model: Young's Modulus (Pa): O Poisson's Ratio: Damping Coefficient: O Permeability Ty	ers:	Material 2	Elastic No Succee Yes ELASTIC $K/K_0 = 1$			
Vaterial 2 Iaterial Name onstitutive Model: ucceed itial Stress Tensile - Constitutive Model Paramet Young's Modulus (Pa): 1e7 Poisson's Ratio : 0.33 - Dampmod Model Paramet Dampmod Model: Young's Modulus (Pa): 0 Poisson's Ratio: 0 Damping Coefficient: 0 Permeability Ty	eters:	Material 2	Elastic No Succeo Yes ELASTIC	rd		
Vaterial 2 Iaterial Name onstitutive Model: ucceed itial Stress Tensile -Constitutive Model Paramet Young's Modulus (Pa): 1e7 Poisson's Ratio : 0.33 -Dampmod Model Paramet Dampmod Model: Young's Modulus (Pa): 0 Poisson's Ratio: 0 Damping Coefficient: 0 Permeability Ty Material Parameters Calid Daticle Public Modules (Pa)	eters: ers: Constant	Material 2	Elastic No Succee Yes ELASTIC $K/K_0 = 1$	rd		
Vaterial 2 Iaterial Name onstitutive Model: ucceed hitial Stress Tensile -Constitutive Model Paramet Young's Modulus (Pa): Poisson's Ratio: Dampmod Model: Young's Modulus (Pa): O Poisson's Ratio: Damping Coefficient: O Permeability Ty Material Parameters Solid Particle Bulk Modulus (P Coavular Dowrit: (In: cal)	erers: Constant : 1.0E+20 2700	Material 2	Elastic No Succee Yes ELASTIC $K/K_0 = 1$ Saturation (0-1):	2d		
Vaterial 2 Iaterial Name onstitutive Model: ucceed hitial Stress Tensile -Constitutive Model Paramet Young's Modulus (Pa): Poisson's Ratio: Dampmod Model: Young's Modulus (Pa): Opisson's Ratio: Damping Coefficient: O Permeability Ty Material Parameters Solid Particle Bulk Modulus (P Granular Density (kg/m ³):	eters: ers: Constant : 1.0E+20 2700 2700	Material 2	Elastic No Succee Yes ELASTIC $K/K_0 = 1$ Saturation (0-1): Fluid Density (kg/m ³):	ed		
Vaterial 2 Iaterial Name onstitutive Model: ucceed hitial Stress Tensile -Constitutive Model Paramet Young's Modulus (Pa): Poisson's Ratio: Dampmod Model: Young's Modulus (Pa): O Poisson's Ratio: Damping Coefficient: O Permeability Ty Permeability Ty Material Parameters Solid Particle Bulk Modulus (P Granular Density (kg/m ³): Void Ratio:	eters: ers: Constant : 1.0E+20 2700 0.6	Material 2	Elastic No Succee Yes ELASTIC ELASTIC Saturation (0-1): Fluid Density (kg/m ³): Permeability x(m/s):	ed		
Vaterial 2 Iaterial Name onstitutive Model: ucceed hitial Stress Tensile - Constitutive Model Paramet Young's Modulus (Pa): 1e7 Poisson's Ratio : 0.33 - Dampmod Model: Young's Modulus (Pa): 0 Poisson's Ratio: 0 Damping Coefficient: 0 Permeability Ty Permeability Ty Material Parameters Solid Particle Bulk Modulus (P Granular Density (kg/m ³): Void Ratio:	eters:	Material 2	Elastic No Succee Yes ELASTIC ELASTIC Saturation (0-1): Fluid Density (kg/m ³): Permeability x(m/s): Permeability y(m/s):	ed 1 1 1 1000 0.1 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Material 3					_		>
Aaterial Name			Material 3	3			1
Constitutive Mod	el:			Elastic		T	
ucceed				No Succeed		T	1
nitial Stress Tens	sile			Yes		T	1
-Constitutive Model F	Parameters						1
Young's Modulus (Pa):	1e7						
Poisson's Ratio :	0.33						
—Dampmod Model Pa	rameters:-						ו
Dampmod Model:				ELASTIC		•	
Young's Modulus (Pa)	: 0						
Poisson's Ratio:	0						
Damping Coefficient:	: 0						
Deres - Lillée Te				V/V = 1]
Permeability Iy		onstant		$\kappa/\kappa_0 = 1$			
Matavial Davam	otores						1
		05+20		Coturation (0, 1)	1		
Callel Daniel a Dully Maria	iulus (Pa):	.0E+20		Saturation (0-1):	1		
Solid Particle Bulk Mod	3	Granular Density (kg/m ²): 2700			1 1 / 1 / 1 / 1		
Solid Particle Bulk Mod Granular Density (kg/m	1 ³): 2	.700		Fluid Density (kg/m²):	1000		
Solid Particle Bulk Mod Granular Density (kg/m Void Ratio:	n³): 2	.700 .4		Huid Density (kg/m ³): Permeability x(m/s):	0.01		
Solid Particle Bulk Mod Granular Density (kg/m Void Ratio:	n³): 2	1.4		Fluid Density (kg/m²): Permeability x(m/s): Permeability y(m/s):	0.01		

图 9-14 材料参数设置界面

9.2.2.5 设置求解器类型

点击 FSSI-CAS-2D/3D—Preprocess—Solver—Solver Type,在弹出对话框中设置求解器类型,如图 9-15 所示。

F	🐒 Solver Setup				\times
Solver Star		atic 💌	Drained	▼	
	Parameters				
	Rotation		Non	-Rotation	
	Stiffness Matrix Symmetry	r		No	
	Iterative Convergence Crit	eria	0.01		
	Maximum Subdivision Nu	mber	100		
	Property Updation		U		
	Analysis Type				
	Restart File Written			Yes	
	Deformation to 0 in Resta	rt File			
	Displacement Succeed				
	NBFGS		1		
	Sparse Solver Type		Direct Spa	arse Solver (LU)	
	Parallel Method		CPU	OpenMP	
	CPU Parallel Threads		4		
				Ok	

图 9-15 求解器类型及相关参数设置界面

9.2.2.6 时间步设置

点击 FssiCAS—Preprocess—Solver—Time Step 。Step 1 的时间步选项卡中 Simulation Time (s)为计算总时间,设置为 1 s; Start Time of Current Step(s)为开始计算时间,设置为 0 s; Interval for Time Steps (s)为时间步长,设置为 0.1 s; Interval for Updating Coordinate (s)为坐标更新时间,设置为 0.1 s; Interval for Updating Global Stiffness Matrix (s)为刚度矩阵更新时间,设置为 1.1 s; Maximum Iterations 为每个时间步最大迭代次数,设置为 10 步; Restart File Output Interval (s)为输出重启文件的时间,设置为 1。1 s; Results File Output Interval (s)为输出某一时刻所有节点/高斯点上的位移、应力、应变等结果文件的时间间隔,设置为每 0.2 s 输出一次结果文件; Results Output 为选择输出节点上或高斯点上的结果; State Variables Output 为选择是否输出状态变量; Results Sequence 为选择设置计算结果序列,可选择是否计算保存位移、应力、应变、加速度等结果; Results Format 为计算结果文件形式,可选择保存为二进制文件或 ASCII 文件; History Output Interval (s)为输出特定的节点或单元上的应力、应变等结果文件的时间间隔,设置为每 0.1 s 输出一次。 a , β 1, β 2 为时间系数,保持默认值即可,时间步 step1 的具体设置如图 9-16 所示,完成设置后分别点击 Create。

F	👷 Time Step	?	×
:	Sub Step 1		^
	Parameter		
	Simulation Time (s)	1	
	Start Time of Current Step (s)	0	
	Interval for Time Steps (s)	0.1	
	Interval for Updating Coordinate (s)	0.1	
	Interval for Updating Global Stiffness Matrix (s)	1.1	
	Maximum Iterations	10	
	Restart File Output Interval (s)	1.1	
	Results File Output Interval (s)	0.2	
	Results Output	On Nodes 🔻	
	State Variables Output	No 🔻	
	Results Sequence	Manage	
	Results Format	Binary v	
	History Output Interval (s)	0.1	
	α	0.6	
	β1	0.605	
	β2	0.6	
	Croate	Doloto	~

图 9-16 时间步 Step1 相关参数设置界面

9.2.2.7 设置初始条件

在 Step 1 时间步操作界面中点击 FSSI-CAS-2D/3D—Preprocess—Initial State,设置初始条件,点击 ok,完成初始状态设置,如图 9-17 所示。

1	🐒 Initial State	,	×
	Calver	Ctatia	
	Solver:		
	Туре:	Generate Initial File	V
	Set initial s	rate to Zero Yes	
			Ok

图 9-17 初始条件设置界面

9.2.3 时间步 step2 设置

本案例设置 Step 1、Step 2 两个时间步, Step 1 用于给后续计算提供一个良好的初始状态, Step 2 为正式加载计算时间步。下面进行时间步 Step 2 的设置。

9.2.3.1 添加时间步

点击 ₩ 按键可增加时间步,添加成功后左端任务栏会显示添加的时间步,点击 ▶ 按键可以对需要设置的时间步进行设置,如图 9-18 所示。

Step 1	v Step	step step		
F ss Creat Time Step		×	E	🗄 🕒 Time Step 🖨 Step 1
Time Step: Step				Sub_Step
	C	Dk		Sub_Step

图 9-18 增加时间步的步骤示意图

如果先设置 Step 1 的边界条件和前处理的各项参数再添加新的时间步,新的时间步会自 动复制 Step 1 的所有设置;如果先添加新的时间步再设置 Step 1,每个时间步都需要重新设 置对应的边界条件和参数。为了提高操作效率,一般情况下先将 Step 1 的所有参数都设置完 整再创建新的时间步。

9.2.3.2 添加边界条件

与时间步 Step1 中设置相同。

9.2.3.3 导入自定义边界条件

点击左上角工具栏 UserDefined,在下拉菜单中选择 Boundary Condition—Add,如图 9-19 所示。

E. Francisco

ss FssiCAS	F ss [§] UserDefined Boundary Condition Loadi X
File UserDefined Support Soil Model Image: Soil Model Image: Soil Model Boundary Condition Load Model Results Delete	Please load the DII file that includes the UserDefined Boundary Conditions Load Boundary Condi Load DII Ok

图 9-19 导入自定义边界条件动态链接库

导入自定义边界条件动态链接库文件后,还需选择用户自定义边界条件适用的位置和边 界类型,具体操作如图 9-20 所示。

注: 边界类型的确定: 对位移、集中力进行自定义时选择固体节点(On Solid Nodes); 自定义孔压、流量选择流体节点(On Fluid Nodes);自定义分布力选择固体单元(On Solid Elements); 自定义分布渗流速度选择流体单元(On Fluid Elements)。

Displacement	😼 Boundary Apply	×
Force	BC Name: BC-6	
🛎 Flux		
🚻 Distribution Pressure		
🛎 Flow Velocity	UserDefined DII Userdefined 1	▼
🔁 Hydrodynamic		
UserDefined	🐼 On Solid Nodes 🕨	
H→ Periodic Condition	🐼 On Fluid Nodes 🔸	
	On Solid Elements ► O Apply Ok	
	🕢 On Fluid Elements 🕨 🗢 Delete	

图 9-20 将自定义边界条件应用到模型的特定边界

注:如想删掉用户自定义边界文件,不仅需要删除添加的 UserDefined_BoundaryValue.dll 文件:Boundary Condition—Delete,而且需要对适用位置的边界类型进行删除(同时撤销 图 9-19、图 9-20 的操作)。

9.2.3.4 设置重力场

与时间步 Step1 中设置相同。

9.2.3.5 设置水动力边界条件

与时间步 Step1 中设置相同。

9.2.3.6 设置材料参数

与时间步 Step1 中设置相同

9.2.3.7 设置求解器类型

与时间步 Step1 中设置相同

9.2.3.8 设置时间步

点击 FssiCAS—Preprocess—Solver—Time Step。Step 2 的时间步选项卡中 Simulation Time (s)为计算总时间,设置为 10 s; Start Time of Current Step(s)为开始计算时间,设置为 0 s; Interval for Time Steps (s)为时间步长,设置为 0.05s; Interval for Updating Coordinate (s)为坐标更新时 间,设置为 11 s; Interval for Updating Global Stiffness Matrix (s)为刚度矩阵更新时间,设置为 11 s; Maximum Iterations 为每个时间步最大迭代次数,设置为 10 步; Restart File Output Interval (s)为输出重启文件的时间,设置为 11 s; Results File Output Interval (s)为输出某一时刻所有节 点/高斯点上的位移、应力、应变等结果文件的时间间隔,设置为每 0.05 s 输出一次结果文件; Results Output 为选择输出节点上或高斯点上的结果; State Variables Output 为选择是否输出状 态变量; Results Sequence 为选择设置计算结果序列,可选择是否计算保存位移、应力、应变、 加速度等结果;Results Format 为计算结果文件形式,可选择保存为二进制文件或 ASCII 文件; History Output Interval (s)为输出特定的节点或单元上的应力、应变等结果文件的时间间隔,设 置为每 0.1 s 输出一次。 a, β 1, β 2 为时间系数,保持默认值即可,时间步 step 2 的具体设 置如图 9-21 所示,完成设置后分别点击 Create。

Fssi Time Step	? ×	
Sub Step 1		~
Parameter		
Simulation Time (s)	10	
Start Time of Current Step (s)	0	
Interval for Time Steps (s)	0.05	
Interval for Updating Coordinate (s)	11	
Interval for Updating Global Stiffness Matrix (s)	11	
Maximum Iterations	10	
Restart File Output Interval (s)	11	
Results File Output Interval (s)	0.05	
Results Output	On Nodes 🔻	
State Variables Output	No	
Results Sequence	Manage	
Results Format	Binary 🔻	
History Output Interval (s)	0.1	
α	0.6	
β1	0.605	
β2	0.6	
Croat	Dalata	-

图 9-21 时间步 Step2 相关参数设置界面

9.2.3.9 设置初始条件

在 Step 2 时间步操作界面中点击 FSSI-CAS-2D/3D—Preprocess—Initial State,设置初始条件,点击 ok,完成初始状态设置,如图 9-22 所示。

Initial St	ate X
Solver:	Static
Type:	Generate Initial File
Set initia	I state to Zero Yes 💌
	Ok

图 9-22 初始条件设置界面

9.2.4 计算

点击 FSSI-CAS-2D/3D—Preprocess—Computation—FSSI-W,保存当前项目,开始计算。 显示图 9-23 红框内所示内容时表示计算完成。

Fs Monitor	-	×
Solver Screen TimeHistory		
FSSI-CAS-2D_Soil Model For Windows OS		^
FssiCAS Licensed To Academic User By Prof. Jianhong Ye At WHRSM_CAS SolverType : Static Date : 20220422 Time : 11:33:29		
StepTime : 2.000 DeltaTime : 0.100 Max_Iteration: 10 RestartTime: 2.100 Toler : 0.010 Ncrit : 1		
Minimum Number Of Iterations : 0 Maximum Number Of Iterations : 1		
Number Of Non-Convergence Time Steps: 0 Total / Average Number Of Iterations: 1 5.0000001E-02 RunTime : 2.000 Iterations: 0 Kstep : 20 (Converged)		
Solution process at this step is completed at: 11:33:29		
Begin To Save Final File		
Displacement Order: 0		
FssiCAS For Windows OS Program Name: FssiCAS		~

图 9-23 数值计算完成界面

9.3 FSSI-CAS-2D/3D 图形界面操作——后处理

9.3.1 加载文件

点击 FSSI-CAS-2D/3D—Postprocess—Open Results File,选择需要处理的结果文件夹,如 图 9-24 所示。

图 9-24 加载数值计算结果文件步骤图

9.3.2 绘制分布图

点击 FSSI-CAS-2D/3D—Postprocess—Distribution Plot—Solid—Displacement,在界面上 方工具栏选择 Displacement Z,输入时间步点击回车,如图 9-24 所示。

本案例计算结果分布图可以由伸缩栏 Export Results Figure 按键导出,如图 9-25 所示。

Liquefaction Potential
Scalar Bar
Axis
Perspective
Sectional View
Export
Export Sequence Images Stop
Export Results Text
Export Current Figure

图 9-25 图像输出按键示意图

结果分布图如图 9-26 所示。由于每个时间步数下的结果分布图都不一样,此处只展示 40 时间步下的结果分布图。

Fssi

Effective Stress X

Shear Strain XZ

Fssi

Seepage Velocity Z

Fssi

Seepage Force Z

图 9-26 计算结果分布图